
1536 16th St. N.W., Washington, DC 20036

December 1, 2025

Dear Members of the National Cancer Advisory Board:

I am writing as a cellular biologist and Research Associate with the Science Advancement and Outreach Division at PETA to urge the National Cancer Advisory Board (NCAB) to align its research and training priorities with NIH's April 2025 commitment to prioritize non-animal methods (NAMs).

1. End the use of animals in cancer research

While screening programs have significantly reduced cancer mortality,^{1,2} cancer remains the second leading cause of death in the U.S.^{3,4} A key driver of this persistent burden is our continued reliance on animal testing to study cancer and develop treatments. Despite massive investment in these experiments, the success rate for oncology drugs remains below 10%.⁵ This failure is driven by the profound genetic, molecular, immunological, and cellular differences between humans and mice, which prevent animal experiments from accurately identifying effective cancer therapies.⁶

The methods used to create animal models of cancer—particularly xenografted and genetically engineered animals—present additional scientific limitations.^{7,8} In xenografted animals, transplanting human cells disrupts the genetic landscape in ways that do not occur in patients, altering disease progression and drug response.⁹ Genetically modified animals offer limited control over gene expression levels and may introduce off-target changes.¹⁰ These models also fail to replicate the sporadic and heterogeneous nature of human tumor development, producing results that do not translate to the clinic.¹¹

Human-relevant methods offer powerful, mechanistic insights—often using a patient's own cancer cells—in a physiologically meaningful environment.¹² These approaches include bioprinted tumor models, organ-on-chip systems, and organoids, which can be used to test potential cancer therapeutics,^{13,14,15,16,17} predict treatment response,^{18,19} identify biomarkers,²⁰ and study the tumor microenvironment and neo-vasculature.^{21,22} Additionally, cancer genomics^{23,24,25,26,27} and machine-learning tools^{28,29,30,31} are transforming diagnosis and enabling real-time predictions of therapeutic response.

With NIH now investing in NAM-focused infrastructure—including the Standardized Organoid Modeling Center³² and initiatives to expand funding and training in human-relevant science³³—NCAB has a pivotal opportunity to lead by example and end its reliance on animal models.

2. Expand infrastructure and incentives for NAM-driven cancer research

Non-animal, human-specific technologies are already reshaping the cancer research landscape, but broader institutional investment is needed to accelerate their adoption and maximize their impact. NCAB can advance this shift by:

- Creating dedicated funding streams specifically for cancer research projects that use NAMs. (i.e. RFAs for cancer NAM development and/ or core funding for human cancer organoid banks or tissue biobanks)
- Building a centralized, openly accessible platform housing validated human-relevant models, datasets, and analytical tools for cancer research to streamline collaboration and reduce duplication of effort.
- Supporting integrated research hubs that bring together experts in human cancer biology, computational modeling, bioengineering, and immunology to fast-track methodological innovation.
- Including researchers with cancer NAM expertise on relevant study sections.

3. Strengthen training pipelines for scientists adopting NAMs

Many cancer researchers were trained primarily using animal models and face significant barriers when adopting new technologies. NCAB can help bridge this gap by:

- Launching specialized training grants and fellowships that equip researchers with hands-on experience using NAMs in cancer research.
- Collaborating with universities and research institutes to create continuing-education and certification programs focused on NAM technologies.
- Providing transition and early-career awards that incentivize investigators to replace experiments on animals with human-based systems and establish NAM-focused research programs.

By implementing these recommendations, NCAB can help ensure that cancer research becomes more predictive, efficient, and human-specific—ultimately accelerating progress toward curing cancer and improving patient outcomes.

Thank you for considering these recommendations.

Sincerely,

Gabby Vidaurre, Ph.D.
Research Associate
Science Advancement and Outreach
Laboratory Investigations Department
People for the Ethical Treatment of Animals

¹ Wender RC, Brawley OW, Fedewa SA, Gansler T, Smith RA. A blueprint for cancer screening and early detection: advancing screening's contribution to cancer control. *CA Cancer J Clin.* 2019;69(1):50-79. doi:10.3322/caac.21550

² Loud JT, Murphy J. Cancer screening and early detection in the 21st century. *Semin Oncol Nurs.* 2017;33(2):121128. doi:10.1016/j.soncn.2017.02.002

³ National Cancer Institute. Cancer statistics. Cancer.gov. May 9, 2024. Accessed November 25, 2024. <https://www.cancer.gov/about-cancer/understanding/statistics>

⁴ National Center for Health Statistics. Leading causes of death. Cdc.gov. September 17, 2025. Accessed November 25, 2025. <https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm>

⁵ Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. *Biostatistics.* 2019;20(2):273-286. doi:10.1093/biostatistics/kxx069

⁶ Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. *Am J Transl Res.* 2014;6(2):114-118

⁷ Li Z, Zheng W, Wang H, et al. Application of animal models in cancer research: recent progress and future prospects. *Cancer Manag Res.* 2021;13:2455-2475. doi:10.2147/CMAR.S302565

⁸ Zhou Y, Xia J, Xu S, et al. Experimental mouse models for translational human cancer research. *Front Immunol.* 2023;14. doi:10.3389/fimmu.2023.1095388

⁹ Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. *Nat Genet.* 2017;49:1567-1575. doi:10.1038/ng.3967

¹⁰ Cheon DJ, Orsulic S. Mouse models of cancer. *Annu Rev Pathol.* 2011;6:95-119. doi:10.1146/annurev.pathol.3.121806.154244

¹¹ Cheon, et al.

¹² Jean-Quartier C, Jeanquartier F, Jurisica I, Holzinger A. In silico cancer research towards 3R. *BMC Cancer.* 2018;18(1):408. doi:10.1186/s12885-018-4302-0

¹³ Tricinci O, De Pasquale D, Marino A, Battaglini M, Pucci C, Ciofani G. A 3D biohybrid real-scale model of the brain cancer microenvironment for advanced in vitro testing. *Adv Mater Technol.* 2020;5(10):2000540. doi:10.1002/admt.202000540

¹⁴ Dey M, Kim MH, Dogan M, et al. Chemotherapeutics and CAR-T cell-based immunotherapeutics screening on a 3D bioprinted vascularized breast tumor model. *Adv Funct Mater.* 2022;32(52):2203966. doi:10.1002/adfm.202203966

¹⁵ Kim Y, Lee J, Lee S, Jung HJ, Kwak B. Anisotropic tumor spheroid remission with binary tumor-microenvironment-a-chip. *Biosens Bioelectron.* 2024;243:115787. doi:10.1016/j.bios.2023.115787

¹⁶ McAleer CW, Long CJ, Elbrecht D, et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. *Sci Transl Med.* 2019;11(497):eaav1386. doi:10.1126/scitranslmed.aav1386

¹⁷ Raffo-Romero A, Ziane-Chaouche L, Salomé-Desnoulez S, et al. A co-culture system of macrophages with breast cancer tumoroids to study cell interactions and therapeutic responses. *Cell Rep Methods.* 2024;4(6). doi:10.1016/j.crmeth.2024.100792

¹⁸ Sun H, Sun L, Ke X, et al. Prediction of clinical precision chemotherapy by patient-derived 3D bioprinting models of colorectal cancer and its liver metastases. *Adv Sci (Weinh).* 2024;11(2):2304460. doi:10.1002/advs.202304460

¹⁹ Tan T, Mouradov D, Lee M, et al. Unified framework for patient-derived, tumor-organoid-based predictive testing of standard-of-care therapies in metastatic colorectal cancer. *Cell Rep Med.* 2023;4(12). doi:10.1016/j.xcrm.2023.101335

²⁰ Millen R, De Kort WWB, Koomen M, et al. Patient-derived head and neck cancer organoids allow treatment stratification and serve as a tool for biomarker validation and identification. *Med.* 2023;4(5):290-310.e12. doi:10.1016/j.medj.2023.04.003

²¹ Asciak L, Gilmour L, Williams JA, et al. Investigating multi-material hydrogel three-dimensional printing for in vitro representation of the neovasculature of solid tumours: a comprehensive mechanical analysis and assessment of nitric oxide release from human umbilical vein endothelial cells. *R Soc Open Sci.* 2023;10(8):230929. doi:10.1098/rsos.230929

²² Polidoro MA, Ferrari E, Soldani C, et al. Cholangiocarcinoma-on-a-chip: a human 3D platform for personalised medicine. *JHEP Rep.* 2024;6(1). doi:10.1016/j.jhepr.2023.100910

²³ Ethier SP, Guest ST, Garrett-Mayer E, et al. Development and implementation of the SUM breast cancer cell line functional genomics knowledge base. *NPJ Breast Cancer.* 2020;6(1):1-14. doi:10.1038/s41523-020-0173-z

²⁴ Campbell P, Getz G, Korbel J, et al. Pan-cancer analysis of whole genomes. *Nature.* 2020;578:82-93. doi:10.1038/s41586-020-1969-6

²⁵ Dong X, Ding L, Thrasher A, et al. NetBID2 provides comprehensive hidden driver analysis. *Nat Commun.* 2023;14(1):2581. doi:10.1038/s41467-023-38335-6

²⁶ Yang H, Zhao L, Li D, et al. Subtype-WGME enables whole-genome-wide multi-omics cancer subtyping. *Cell Rep Methods.* 2024;4(6):100781. doi:10.1016/j.crmeth.2024.100781

²⁷ Meric-Bernstam F, Ford JM, O'Dwyer PJ, et al. National Cancer Institute Combination Therapy Platform Trial with Molecular Analysis for Therapy Choice (ComboMATCH). *Clin Cancer Res.* 2023;29(8):1412-1422. doi:10.1158/1078-0432.CCR-22-3334

²⁸ Landhuis E. Deep learning takes on tumours. *Nature.* 2020;580(7804):551-553. doi:10.1038/D41586-02001128-8

²⁹ Acanda De La Rocha AM, Berlow NE, Fader M, et al. Feasibility of functional precision medicine for guiding treatment of relapsed or refractory pediatric cancers. *Nat Med.* 2024;30(4):990-1000. doi:10.1038/s41591-02402848-4

³⁰ Meaney C, Das S, Colak E, Kohandel M. Deep learning characterization of brain tumours with diffusion weighted imaging. *J Theor Biol.* 2023;557:111342. doi:10.1016/j.jtbi.2022.111342

³¹ Tan CL, Lindner K, Boschert T, et al. Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy. *Nat Biotechnol.* 2024;1-9. doi:10.1038/s41587-024-02161-y

³² National Institutes of Health. NIH establishes nation's first dedicated organoid development center to reduce reliance on animal modeling. September 25, 2025. Accessed November 25, 2025. <https://www.nih.gov/news-events/news-releases/nih-establishes-nations-first-dedicated-organoid-development-center-reduce-reliance-animal-modeling>

³³ National Institutes of Health. NIH to prioritize human-based research technologies. April 29, 2025. Accessed November 25, 2025. <https://www.nih.gov/news-events/news-releases/nih-prioritize-human-based-research-technologies>